#### Evaluation of proposed move for Water Right No. 33705

Proposed: Move water right no. 33705 to a new well location, a distance of 1,500 ft to the southeast.



Wells within 1 mile: 34015, 13695, 10409, 12950, and 28003 along with two domestic wells in sections 28-28-30 and 32-28-30.

The saturated thickness at the proposed well location is estimated to be 187.7 ft, based upon the GMD3 model. For saturated thickness between 150-200 ft, the drawdown allowance is 3.5 ft.

**50 year Theis Analysis:** The following values were used to run the analysis:

S = 0.1294, T = 2,230.08 ft<sup>2</sup>/day,  $tp_{current} = 77$  days (based on average use and observed rate),  $Q_{current} = 590$  gpm (based on 2021 field inspection),  $tp_{proposed} = 71$  days,  $Q_{proposed} = 890$  gpm

Theis drawdowns were calculated as follows:

34015:

Drawdown from current location = 4.25 ft

Drawdown from proposed location = 3.23ft

Net drawdown = -1.0 ft

13695:

Drawdown from current location = 2.83 ft

Drawdown from proposed location = 3.07 ft

Net drawdown = 0.2 ft

10409:

Drawdown from current location = 2.95 ft

Drawdown from proposed location = 3.05 ft

Net drawdown = 0.1 ft

12950:

Drawdown from current location = 3.38 ft

Drawdown from proposed location = 4.14 ft

Net drawdown = 0.8 ft

28003:

Drawdown from current location = 2.61 ft

Drawdown from proposed location = 3.02 ft

Net drawdown = 0.4 ft

Domestic 28-28-30:

Drawdown from current location = 3.47 ft

Drawdown from proposed location = 3.57 ft

Net drawdown = 0.1 ft

Domestic 32-28-30:

Drawdown from current location = 4.78 ft

Drawdown from proposed location = 4.56 ft

Net drawdown = -0.2 ft

Net drawdown does not exceed the drawdown allowance of 3.5 ft for any well within 1 mile of the proposed location. Therefore, critical well analysis is not necessary.

#### Conclusion:

The proposed move is likely to create minimal effects on neighboring wells and appears unlikely to cause impairment. Any concerned neighbors should contact GMD3 at (620) 275-7147 or the Division of Water Resources at (620) 276-2901.



# WELL TEST ANALYSIS

Data Set: C:\Users\scanstation\Documents\move requests\33705\33705 current.aqt

Date: 07/01/24

Time: 11:52:32

# PROJECT INFORMATION

Test Well: 33705

# **WELL DATA**

| Pumping Wells |        |        |
|---------------|--------|--------|
| Well Name     | X (ft) | Y (ft) |
| 33705         | 54465  | 256871 |

| Well Name               | X (ft) | Y (ft) |
|-------------------------|--------|--------|
|                         | 54465  | 256871 |
| <ul><li>34015</li></ul> | 53217  | 259282 |
| <ul><li>10409</li></ul> | 59710  | 256816 |
| <ul><li>13695</li></ul> | 51517  | 252932 |
| <ul><li>12950</li></ul> | 54435  | 252941 |
| <sup>-</sup> 28003      | 59803  | 254249 |
| Domestic 1              | 58113  | 257867 |
| Domestic2               | 52856  | 255213 |

Observation Wells

# SOLUTION

Aquifer Model: Unconfined

 $T = 2230.1 \text{ ft}^2/\text{day}$ 

Kz/Kr = 1.

Solution Method: Theis

S = 0.1294

b = 187.7 ft



# WELL TEST ANALYSIS

Data Set: C:\Users\scanstation\Documents\move requests\33705\33705 proposed.aqt

Date: 07/01/24

Time: 11:52:27

#### PROJECT INFORMATION

Test Well: 33705

#### **WELL DATA**

| P         | umping Wells |        |
|-----------|--------------|--------|
| Well Name | X (ft)       | Y (ft) |
| 33705     | 55288        | 255614 |

| Observation Wells            |        |        |  |  |
|------------------------------|--------|--------|--|--|
| Well Name                    | X (ft) | Y (ft) |  |  |
|                              | 55288  | 255614 |  |  |
| <sup>-</sup> 34015           | 53217  | 259282 |  |  |
| <sup>-</sup> 10409           | 59710  | 256816 |  |  |
| <ul><li>13695</li></ul>      | 51517  | 252932 |  |  |
| <ul><li>12950</li></ul>      | 54435  | 252941 |  |  |
| <b>28003</b>                 | 59803  | 254249 |  |  |
| <ul><li>Domestic 1</li></ul> | 58113  | 257867 |  |  |
| Domestic2                    | 52856  | 255213 |  |  |

# SOLUTION

Aquifer Model: Unconfined

 $T = 2230.1 \text{ ft}^2/\text{day}$ Kz/Kr = 1. Solution Method: Theis

S = 0.1294b = 187.7 ft